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Introduction. Each of the n! distinct permutations P of {1, 2, 3, . . . , n} acquires
natural representation by a “permutation matrix” P, the distinguishing feature
of such matrices being that they have a 1 in every row/column, all other
elements being 0. For example,

P =
(

1 2 3 4 5 6
6 3 2 1 5 4

)

acquires the representation

P =





0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0





since

P





1
2
3
4
5
6




=





6
3
2
1
5
4





All permutation matrices are inverted by transposition P –1 = P T, so are special
instances of rotation matrices, proper or improper det P = ±1 according as the
associated permutation is even or odd.

“Cyclic” permutations possess the structure

Pcyclic =
(

i1 i2 i3 . . . iν−1 iν
i2 i3 i4 . . . iν i1

)
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and are said to have “period” π(Pcyclic) = ν because they give back the identity
permutation I after ν repetitions. The associated permutation matrix Pcyclic is
therefore periodic in the sense that Pν

cyclic = I and therefore

Pk
cyclic = Pk+mν

cyclic : m = 0,±1,±2, . . .

Every permutation P can be resolved into disjoint cycles

P = {C1,C2, . . . ,Cp}

Thus (returning to our previous example)
(

1 2 3 4 5 6
6 3 2 1 5 4

)
= {{1, 6, 4}{2, 3}{5}}

which in matrix language amounts to the statement that P = C1C2C3, with

C1 =





0 0 0 0 0 •
0 1 0 0 0 0
0 0 1 0 0 0
• 0 0 0 0 0
0 0 0 0 1 0
0 0 0 • 0 0




, C2 =





1 0 0 0 0 0
0 0 • 0 0 0
0 • 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, C3 = I

where to emphasize salient structural details I have written • = 1. In this
example P6 = I, C3

1 = I and C2
2 = I . More generally, if P = {C1,C2, . . . ,Cp}

then the integers {π(C1), π(C2), . . . , π(Cp)} serve to partition n

π(C1) + π(C2) + · · · + π(Cp) = n

and
π(P) = LCM

(
π(C1), π(C2), . . . , π(Cp)

)

Our problem is to discover (or—for large values of n—at least to estimate) the
maximal value πmax(P) assumed by π(P) as P ranges over the set of all possible
permutations of {1, 2, 3, . . . , n}. This amounts to discovery (estimation) of the
greatest possible value LCMmax(n) assumed by LCM(℘(n)) as ℘(n) ranges over
the set of all possible partitions of n.

Preliminaries. To evaluate LCMmax(n) one has in principle only to list the
partitions of n, compute the LCMs of the listed partitions and isolate the ℘(n)
that maximizes the LCM. . . all of which is easy work for Mathematica, which I
used to generate the low-order data tabulated on the next page.

This naive procedure becomes, however, very time-consuming already by
n = 25, for the simple reason that Mathematica has in that instance to examine
a total of p(25) = 1958 partitions, most of which—for reasons to be discussed in
a moment—can be dismissed out of hand as unreasonable LCM-maximization
candidates. This “wasted effort problem” becomes rapidly more burdensome
as n increases.
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n Maximizing Partition Maximal LCM
1 1 1
2 2 2
3 3 3
4 4 4
5 3+2 6
6 6 6

3+2+1 6
7 4+3 12
8 5+3 15
9 5+4 20
10 5+3+2 30
11 5+3+2+1 30

6+5 30
12 5+4+3 60
13 5+4+3+1 60
14 7+4+3 84
15 7+5+3 105
16 7+5+4 140
17 7+5+3+2 210
18 7+5+3+2+1 210
19 7+5+4+3 420
20 7+5+4+3+1 420
21 7+5+4+3+1+1 420
22 7+5+4+3+1+1+1 420
23 8+7+5+3 840
24 8+7+5+3+1 840
25 9+7+5+4 1260

Table 1.The case n = 6 is seen to be exceptional in that two
distinct partitions of 6 are maximal. This curious detail traces to
the circumstance that 6 is a “perfect” number (meaning equal to
the sum of its divisors). The next perfect number—of which finitely
many are known—is 28 = 1 + 2 + 4 + 7 + 14. It is indeed the case
that LCM(28) = LCM(1, 2, 4, 7, 14) = 28, but that number falls far
short of LCMmax(28). At n = 11 we encounter a more interesting
instance of a case in which distinct partitions of a number have the
same least common multiple. On the other hand, the table—though
short—exposes many cases in which distinct numbers have the same
LCM, all of which can be attributed to an obvious “ n → n + 1
mechanism.”

“Wasted computational effort” can be attributed principally to the
occurance of repeated terms in a partitioning of n, since those—except for
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repeated ones, which we saw in Table 1 to be sometimes essential—contribute
nothing toward elevation of the value of the LCM. On that same ground, we
can dismiss partitions in which any pair of elements share a prime factor. In
a sharpened version of the naive procedure described above we might restrict
our attention to partitions in which all elements greater than one are coprime
(or “relatively prime,” meaning have GCD = 1). It is seen—by inspection,
or by application of Mathematica’s CoprimeQ command—that each of the
maximizing partitions listed in Table 1 possesses this property.1

The computational efficiency latent in the coprimality restriction becomes
evident when one compares the number q(n) of coprime partitions of n with
the number p(n) of unrestricted partitions, which is well known to grow rapidly,
yet much (!!) less rapidly than the number n! of permutations, as I illustrate:

n q(n) p(n) n!
2 1 2 2
4 3 5 24
6 6 11 720
8 11 22 40320
10 17 42 3.6288 × 106

12 26 77 4.7900 × 108

14 37 135 8.7178 × 1010

16 50 231 2.0923 × 1013

18 69 385 6.4027 × 1015

20 91 627 2.4329 × 1018

Asymptotically, one has

p(n) ∼ 1
4n

√
3

eπ
√

2n/3 Hardy & Ramanujan, 1918

n! ∼
√

2πn
(

n
e

)n
de Moivre & Stirling, 1730

but I do not possess an asymptotic approximation to q(n).2 More seriously, I
do not possess an algorithm for generating a list of the coprime partitions of n
(it would be counterproductive to create such lists by filtering ever-longer lists
of unrestricted partitions), and in the absence of such lists the “sharpened naive
procedure” mentioned above will remain uselessly “latent.”

Asymptotic estimation of LCMmax(n) . The data reported in Table 1 suggests
that as n increases the elements in the maximizing partition become (relative to
n) progresssively smaller and more numerous. The elements of such partitions

1 Strictly speaking, this is true only for n ≥ 5 since the coprimality concept
is inapplicable in the cases n = 1, 2, 3, 4.

2 See, however, the ADDENDUM attached to the end of this note.



Asymptotic estimation of LCMmax(n) 5

tend to cluster—as compactly as coprimality allows?—about a mean value given
by

mean maximizing element ≈ n
number of elements(n)

From coprimality if follows, moreover, that

LCM(maximizing partition) =
∏

(elements of maximizing partition)

—an elementary proposition to which the data in Table i of course conforms.

We are led thus to expect the LCM-maximizing partition to display a
k-member “coprime packet” with mean ≈ n/k. If coprimality considerations
are set temporarily aside, we expect therefore to have

$(n) = (n/k)k : k -value maximizes $(n)

From
d
dk

(n/k)k = (n/k)k [ log(n/k) − 1] = 0

we are led to set k = kmax = n/e, giving finally

$(n) = en/e > LCMmax(n)

where the inequality is an expression simply of my intuitive expectation that
coprimality considerations will cause the actual LCMmax to fall short of our
idealized estimate. When we use Mathematica’s FindFit command to discover
the function of the form an/b that best conforms to the low-order data reported
in Table 1 we obtain

L(n) = 1.27430 n/0.848197

Equivalently,

log L(n) = 0.285779 n : compare log $(n) = 0.367897 n

which is to say

log [maximal period πmax(n)] ∼ αn : α ≈ 0.285779

Assuming this result—which, by the way, possesses precisely the structure
anticipated by Richard Crandall3 —to be correct in its structural essentials,
we can expect expansion of the data set to lead simply to an adjustment of the
value of α. One would like to possess a theoretical evaluation of α (description
in terms of π, e, small integers, etc.) but the effort to construct such a result
seems likely to require deep knowledge of the distribution of coprimes and God
knows what else—material that lies far beyond my reach. I am reminded in
this connection that4

the probability that k randomly chosen integers are coprime = 1
ζ(k)

which is of no immediate relevance, but provides some indication of the anaytical
riches that may lie close by.

3 Private communication, 19 April 2012.
4 See http://en.wikipedia.org/wiki/Coprime
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n $(n) L(n) LCMmax(n)
1 1.46 1.33 1
2 2.09 1.77 2
3 3.02 2.36 3
4 4.36 3.14 4
5 6.29 4.17 6
6 9.09 5.56 6
7 13.13 7.39 12
8 18.97 9.84 15
9 27.41 13.09 20
10 39.60 17.42 30
11 57.21 23.19 30
12 82.65 30.86 60
13 119.39 41.06 60
14 172.50 54.65 84
15 249.18 72.73 105
16 359.99 96.78 140
17 520.06 128.80 210
18 751.32 171.40 210
19 1085.41 228.10 420
20 1568.05 303.56 420
21 2265.31 403.98 420
22 3272.63 537.61 420
23 4727.86 715.46 840
24 6830.18 952.13 840
25 9867.34 1267.09 1260

Table 2.Comparison of the results predicted by $(n) and L(n) with
the facts of the matter. Of course, one cannot expect asymptotic
formulae to be of much use when n is small. It is clear that $(n) has
been rendered worthless by the strong assumption that went into its
construction. The evidence the L(n) remains valid asymptotically is
entirely circumstantial, based upon very limited data; that it fits the
data as well as it does is not surprising, since it was that data that
was used to fix the value of α, its sole adjustable parameter. For
a graphic display of the same information, see the accompanying
Mathematica notebook.

ADDENDUM. At the end of the notebook just mentioned I construct emperical
evidence—without even the hint of a formal rationale—that the number of
coprime partitions of n is given asymptotically by

q(n) ∼ 4.81107 e0.148647n

Again, one would like to possess theoretical evaluations of the numerics.


